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A TWO-LAYER MODEL FOR THREE DIMENSIONAL

VISCOUS AND INVISCID FLOW CALCULATIONS*

To €. Lin

Avco Systems Division
Wilmington, Massachusetts

and

S« G, Rubin
Polytechnic Institute of New York

Farmingdale, New York

Abstract

A numerical finite difference method
is developed to simulate the viscous flow
over blunt/sharp bodies at incidence.
Herein, a two-layer model is suggested.
The inrer region consists of the three-
dimensional boundary layer and boundary
region. Laminar and turbulent flows are
considered. The governing system applies
in boundary regions and for problems with
cross flow reversal. The equations are
integrated by a predictor-corrector
scheme. For the turbulent boundary layer
analysis, both a mixing length model and
a two-equation kinetic energy-dissipation
system is considered for Reynolds stress
closure. The outer region is invisecid.
The Euler equations are integrated with
McCormack's two level explicit scheme.
For the matching of the two regions,
three dimensional viscous displacement
and entropy layer swallowing are consid-
ered. Numerical solutions are compared
with experimental data and indicate that
the present formulation can give an ac-
curate prediction of aerodynamic loads,
skin friction and heat transfer rates on
sphere-cone-cylinder-flare shape bodies
at angle of attack. The calculations are
suitable for Ei) supersonic or hypersonic
freestreams, (11) large Reynolds number
and (11i) flows without streamwise flow
separation; however, secondary flow re-
versal is allowed.

Nomenclature

a, b, k constants defined in
eq. (24)

al, b2, bl constants defined in
eq. (14)

+
A E 26 Vﬁw//o /‘(//‘/W
d = d&-A4

E, F, G, I Matrices defined in eq. (1)

F = U/Ue
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constant defined in eq. (13)
or local enthalpy

metric coefficients defined
in eq. (1la)

total enthalpy
turbulence kinetic energy
characteristic length

Mach number

pressure

Prandtl number

2, w2)1/2

surface heat transfer

é/[Tm@o- Tm@ﬂ
Re, = S Ue 9//”e

w

2z
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sponsored by the Air Force office of Scientific Research

surface length

i/.€€L/9§¢UQ4$dalt d%

static temperature
velocity components
coordinate frame

angle of attack

variable defined in eq. (6)

v

three dimensional viscous
displacement thickness

boundary layer thickness

(under Grant No. AFOSR 74-2635) and the Avco Independent Research and Development
program,
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© local body slope
A = R Al A 4y
A variable defined in eq. (24)
yn turbulent Eddy viscosity
A molecular viscosity

5)‘7¢ coordinate frame

sz shear stress at the wall

s density
€ turbulence dissipation function
5 constant defined in eq. (17)
subscripts
s refers to shock

b, w refers to surface condition

e refers to boundary layer edge

conditions
8¢ indicates 3 ()/é¢, 8 (¢ )/Bﬁ

respectively

oo refers to free stream conditions

I. Introduction

During the last decade, numerical
comF$t§§ions for both bound?ﬁy ay-
ers and inviscid flows have
been advanced considerably in capability
speed and accuracy. However, the com-
putational procedures for these two flow
regions have been primarily developed
independently so that the effects of
viscous-inviscid interactions have been
largely neglected,

In many cases an inviscid calcula-
tion may become inaccurate unless proper
consideration 1is given to the surface
viscous interaction., On the other hand,
accurate boundary layer edge properties
are sometimes difficult to obtain unless
a meaningful inviscld computational
program 1s avallable. Therefore, numer-
ical calculations of the inner (vis-
cous) and outer (inviscid) regions
should be properly interrelated by suit-
able matching conditions. While this
has been done for two dimensional flows,
three dimensional matched solutions for
general geometries have not been pre-
viously obtalned.

Direct integration of the complete
Navier-Stokes equations avolds the
matching process. Thils has been car-
ried out successfully bYS? number of
researchers for laminar and more

recently turbulent flow.(g) However,
these efforts are still largely confined
to either two dimensionzl or axisym-
metric geometries and even then are quite
time consuming. A second approach uses
a simplified Navier-Stokes system. Itz
alient feature 1is a single-layer mod-
1(10-13) that also precludes the neces-
sity for matching of the inner and outer
regions. Although this approach has been
successful in a number of problems, the
computation times can become excessive.
One inherent difficulty in the single
layer model is the specification of one
coordinate system t< acecount for the two
different length scales in the viccous
and inviscid regions. For example the
laminar boundary layer thickness may in-
crease as VX (x - ;
while the outer bow
It Is difficult for a single "cfrd nate
transformation to take into ccnsidera-
ticn the different growth rates associ-
ated with these two distinct regions.
Therefore, the two-layer model proposed
here appears to be a practical and eco-
nomical alternative for weak interaction
three-dimensional flow calculations.

The formulation, governing equaticns
and numerical methods for the inner
(viscous) and outer (inviscid) regions
will be briefly discussed in sections II
and ITII. Typical numerical solutions are
compared with existing experimental data.
The inner and outer solutions are then
coupled by including the pertinent ef-
fects of viscous displacement and en-
tropy layer swallowing effects. This
procedure is described in section IV
where some relevant examples are depict-
ed.

II. Outer Inviscid Flow

The three dimensional inviscid flow
in the shock layer of a blunt non-cir-
cular body at angle of attack is consid-
ered. A time dependent finite-differ-
ence technique is applied for the sub-
sonic nose reglon and streamwise march-
ing procedure for the supersonic after-
body. A two-level explicit scheme is
used for the calculation of the internal
points and a modified method of charac-
teristics procedure is applied at bound-
ary and shock points.

II.1 Supersonic Reglon

The inviscid formulat?gg is atter-
ned after that of Moretti; how-

ever, the governing equatlons are writ-

ten in divergence form. The Euler equa-
tions in cylindrical coordinate are:

[’#f7f6¢+1=0 (1)
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Here 4,V, W, P and P

are nondimensionaliz;d with respect to
free stream flow properties. The temp-
erature distribution is evaluated from
the following isoenergtic conditon,

7= Bp=1+ 2 M —$ M2 )W)
(2)
An explicit numerical method is
employed. The two level 1nte%fé ion

scheme su%gested by McCormack has
been adopted for the interior points.

The marching A £ 1is limited by the
Courant-Frederick-Levy conditon.

The outer bow shock, r_ =r_ (& ,9)
1s treated as discontinuity® Fi1dw prop-
erties behind the shock are evaluated
from the Rankine-Hugoniot relation once
the ncrmal velocity component

. 1s obtained. An additional
cgﬂditioﬁ which determines the value or
equivalently the shock orientation is
supplied by the following characteristic
compatibllity relation:

8/ a2’ = §(Pp Uq.vy, wp Uy Vg) .
The complete expression for & Fs /a?
1s derived in Reference (15). Eq. (3) is
valid along the right running character-
istlic surface defined by

5%?:;\

w

)

Aza{AU- e 7,
2 IayE
"‘M‘/[(V'?r s Eg (Uz'mj)J(M:)

3 ={
A=Upy+ V7, + 5 7y, 0% (U= )

McCormack's scheme also v to inte-
grate eq. (3) for (r.)_ . Herea ¢(Var
is evaluated by a th¥e€-point end 4if-
ference £« ] It should be ncoted th
iteration 1 cessary for the form-
ulation on boundary points.
On the body surface, it is reg
that =
s =0
b

(5)

The wall pressure is obtained from the

compatibility relaticn along the left
running characteristic, 1i.e,

Pe= 2 Py LLL A [uvy ~(VF ) U]

2 U Wz (rp) uw(re)
+ U rLI}- == ¢+__—r (¥4

() g + X2 plv-# ,8u]

'L
w
[?;;f-+ Wg +V+ Wz ??]
tPW MY (Vp-w) - wtte KB (v
7 e T8 - r¥
u-jgr | 4y

:I—zr—ﬁlwz—ﬂl
A= V/M 1+ 17F (‘Zz (6)

Since the body /ntrcpy is known, the den-
sity can be computed from the isentropic
relation. inally the velocity compon-
ents at wall are calculated from egs.

(2) and (5).
II.2 Inviscid Blunt Body Calculation

Moretti's(u) time-dependent blunt
body program has been used to calculate
the flow field in the subsonic nose re-
gion. Thils code 1is more versatile than
the inverse method of Ref. (7), particu-
larly when the free stream Mach number is
low (Mp=3), and the body it other thsn
the sphere-cone germotry. Recently this
numerical program has been modifled tc

include real gd d nonuniform fre:
stream effect ( 3 The blunt body sol-
utions rupply tk‘ starting conditions for
the downstream ruporrrnic flow calcula-
tions.

II.3 Results for Inviscid Flow

In order to check the computer cod
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and to demonstrate its capability several
sample calculations are presented here.
The surface pressure distribution oyer
an elliptic cone (b/A = 1.79) at 15
angle of attack 1s depicted in Fig. 2.
Comparison is TT?3 with Zakkay and
Visich's data; the agreement 1is en-
couraging. 1t should be noted that for
/o= 1.5 ( & = angle of attack, 9 =
cone half angle) the inviscid computa-
tional for a sharp cone becomes unstable
and the inner viscous region cannot be
neglected. The aim of our present work
is to correct the deficiency of the in-
viscid solution by matching with the
boundary layer.

Fig. 3 shows the inv%scid results
over a sphere cone (6 = g 3 at angle of
incidence ( ot= 4° and 10°). The ex-
pansion-recompression processes near the
Juncticn of sphere and cone are simulated
quite well by the finite difference sol-
utions.

The last case considered is the sur-
face pressure distribution on a cone-
cylinder-flare which 1is shown in Fig. 4.
Also presented are ZakkaY ggd Callahan's
experiment measurements, 1

In summary, it has been demonstrated
that the numerical code for the inviscid
flow 1is reasonably accurate and versatile.
In the following section, the formula-
tion for the inner region 1s discussed.

III. Inner Layer (Viscous Region)

Many of the existing theoretical
studies of three dimensiocnal boundary
layer eitger assume a similarity approxi-
mation(19) (such that the governing eq-
uations become pseudo two dimensional),
or res?gg tg ? small cross flow approxi-
mation s 1) op independence principle.
The nature of the three dimensional bound-
ary layer equati has been inve ga
by Der and Raet .gfkecently Davisfgg’ Eﬁé
and his associates have made a series of
studies on numerical methods for nonsimi-
lar boundary layers on sharp as well as
blunt bodies Generally the Dwyer-Krause
method(25, 26) 1s sultable for boundary
layer computations, but without the exist-
ence of boundary regions. The £85m583-
tion suggested by Lin and Rubin "
can handle problems with boundary regions,
One advantage of this method 1s the
ability to resolve flows with crossflow
reversal. Significantly this procedure
also removes the difficulty concerning
existence and uniq?ggeﬁs of the solutlons
near the leeplane,\3VYa

Recently, Blottner and 51113(31)
have generalized the Dwyer-Krause scheme
for laminar incompressible flow, further-
more, they suggest a system of useful
coordinates for blunt body calculations.

III.1 Formulation

(55
It has becn gbseryved experimentally”<’
and analytically(l" 7] that secondary
flow reversal does not occur at the tip of
a sharp cone, or in a blunted nose region
when the body i:s at moderate angle of in-
cildence. This important cbservation is
implicit in the present theoretical form-
ulation., Herein, the Blottner and Ellis
procedure(31) will be adopted for flow in
the blunt nose region nwhi%w the predictor-
corrector formulztion(27-30) is yseqd for
the afterbody supersonic flow. This choice
1s acceptable as a boundary region does

not appear near the nose, but cross flow
reversal 1s possible in the downstream
flow. These two approaches were original-
ly designed for laminar flow, but are ex-
tended to turbulent flow conditions in the
present paper.

III.1.A Blunt Body Region

A bcdy orientated coordinafe_gystem
suggested by Blottner and Ellis 31) is
employed here (Fig. 5). One coordinate
is defined from the intersecticn of the
body surface with the plane containing
the x-axls and at an angle ¢ from the
y-axis, These lines define the coordinate
¢ = constant, (here one would chcose
the y-axis to be the symmetry plape). The
other coordinates are orthogonal = con-
stant lines, (see Fig. 5)

The surface of the bedy is defined by
an expression of the form

X, = X|(Xa,¢) ; Xa= Xe (X.,¢)

where % and X% represent % and r
respectivély. The“position vector T can
be written as

T=x0 + rcos¢{ + rsiné k
Vectors that are tangent to ¢ = constant

and 6= constant aref:é"/“)¢ andt:(é'ya%
respectively. For the coordinates to be
orthogonal, the relation st = O must be
satisfied. This leads to

d3Xg =A= _(%t)¢ (g%‘_)h. (7)
3¢ J¢ I+ _ﬂ;)’
(6Xz¢

Along & = constant, this relation is writ-
ten in finite-difference form as

(Xe)gy) =(Xe)u* AgoyD @ (8)

For points along the symmetry line, we
obtain:

A%, =As// [ +(3%1/8 x,)°

(9)
AS=hgdg  along =0
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The metric coefficients are found from
the definition:

/;gz(dxzi-dr‘)yz/d{ e
ﬁ¢=[dx’+dr‘+ (rd ¢)zl/d o

Eqs. (10) are expressed in finite differ-
ence form in the numerical computations.

If the inviscid flow on the body
surface is given in terms of the (x, y,
z) coordinates (Fig. 5), so that

L_lTZU|-'L+V1i+ WJ&

then the velocity components parallel to
the f and ¢ planes can be found from

Ue = (Ur -3)//5/
we = (&r - £)/1£1
The three dimensional boundary lay-

er equations in terms of the curvilinear
coordinat-s é,?, ) can be written as:

continuity

+VZE (2 FVZE +3 wh vop ) -
(W [ PV gy WAL VT | =
¢ momentum

Ve £y 4__&,{ FFg +wii_ F¢+(F=_ ®‘)a Eally

+(wF- wﬂ)[n SMale | L h¢ ] wt w,@)}
S‘H/"/'f)

¢ momentum
Ve Wy + G { W@ i (W - WD) aJ:;

Anhdy_ ! 2_ /2% )hE adn
el - (0" oo e

[M/é\N - Méa)évk]

[/3/—7-3%3 (11)

energy

VZ@’:*XIFQ"W ®¢l =P UM (,y_)
(i) W) ety
(5 At o e e 2

where

F= MQ » W= %e »®= T/i
PP/, A= P, M= e/,

= ? e ?"‘—"‘ZT
N2l Tedy [ R g Ay

A=3E | b=k, = byl

of
The metric coefficients h} and hé which
were given in eq. (10) aré defined's
d.4= 6 dé +/}¢ ds #dyp® (11a)

Along the symmetric line these equations
can be simplified to:

continuity

(Ve)y +/3E (aéF\/Zt ‘e we#re]_o
momcntum

V2F7+T[FF§+(FZ—®
momentum

VeGp+ BE{ Fe, +(FG - @[M&+él—*\ié';

61“ ue. h = o o e
¥ 5 +Fg_(6 6®)§A_A__g&_/_ (b¢)¢¢
energy (F‘®)} A (/O/'(é?)

Ve @ + 38 Fay= R0 ME (5-1)F] + 7 35 P, |

3ln U&l a" /J/:_?)

eafral 13+ o (1) 42 )

where 6 = W/Wc

Near the stagnation point (§ = 0),
serles expansions have been used for e
U., and hy ,

e
2 |
We =2y ¢ *azéq*“‘ !
Ue= blg o o (lz)
h =h€ § o w

Tt should be noted that a distinetion(3l)

must be made between the cacses when

# O and a, = 0. Eq. (11) can be fur-
ther simplifitd to the following form at
the stangation point,

continulty

(e e Bkl 820 3g(El e im0

§ momentum
when @ £0

i ) / / Qa
Vo 6y +F6 ~®+ 2 S(c-0) -%T

+[La' 66s= “L (P Gy)
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when al = 0,

Vo 6p+ 5 (F6-0)-5(F-0@)= _éé:l( ﬁ/fa,,)

; momentum
"2’7"2/"4; B £y +7 (FP-0)

zb. Fe= ®ll_£; ’3{“*"&'7 %%f‘]
48 (6935277

energy:

G a: vl B A 2l
601§ £ a7y 25( P A0,)
There is no restriction on the magnitude
of w in eq. (11-14), therefore, the gover-
ning system is not limited to small cross-
flow. Finally the boundary conditions
for eqs. (11-14) are

(1%)

\
8]

'?:O, F= w:Vl:G—
®=® or @h

I
Q

7:7131 F=@=6= |
w = We/Uo_
II1.1.B Afterbody Supersonic Region

Downstream of the blunt nose, the
formulation described in Ref. 30 is ad-
opted here. The conventional boundary
layer equations are modified to include
all pertinent effects of cross flow dif-
fusion and centrifugal force. With the
usual boundary-layer approximations

—g—>> -3; , Re> 1 and the reten-

tion of cross-diffusion terms, required to
adequately describe boundary regions or
local shear flows formed near separation
plane, the Navier-Stokes equations can be
reduced to ,

continuity

X(pu), - l(/ou)7 +(/Ov)7+ _.‘sm:;(pw“./oar

x: momentumﬁv(ge X) % r‘JI'_‘o

WPUWCY ULy +pV Uyt LUSINS X U §

_%gjoh/25403~l}:-—;isx?i+{/laga7iJ%§:$§rﬁ U7
MRl

R=ME KSR pw? ryr! (15)

y: momentum

@ momentum

XPUW"J—/O”/‘/?*/DV“/7fM‘;X V\/+
+PJ"_—MX !T,:-M§ X rs/mo 5 WW7)7

WE L5 wpr T R w(4m)

energy

XPUTx - T PUT, tPVTy + RUWSAS X T§

- P(I(—t)xlur"z&l-l7+_l.&_ﬁ 4 S/#d- W

g G =& |(#7) & 47|
+ ML 54)//P17-+5ﬁvc1 M¢7l+ 3 X ,
//M-' X(‘Y‘/)(Uo *-— SN W§ #SINE rﬂw
5 (A475) 4|

The coordinate system i:
(1) and the governing s

tricted to small }
boundary ccnditions for the boundary la -
er flow are:

7:0’ d:V:M/:o; 7.—7’.« 7—7.-'_0
7:25 sUslle ; W=We ; 7=7

IIT.2 The Turbulence Model

In egs. (11-15) it is postulated
that the Reynolds ela

the mean rate of strain via a turbulent
eddy viscosity; i.e.

M=t 4 , A4 = molecular viscosity

_/D”/kg; > =’/O‘/T"/‘b’§'

A simple eddy viscosity model is
based on Prandtl’s mixing length hypo-
thesis. For a three-dimensional boundary
layer, it is assumed that U, is a scaler
function independent of the gccrdwnat

irection. Accordingly, the eddy viscos-
ity(JQ can be written ac:

M= AP

where %—2(11 + Wz)/z

(17)
L= rank (%2 _Si—)’)‘:o'(’?
D = Van Driest's damping function = /-
ex?‘-YVA'L' yi=y 'Z’,../ay ¥y
Al=28
For thick turbuleﬂt boundary layers
with trangsverse curvature effects,

Cebeci(33) has suggested the following
modification in the wall region

A /0,. {M//‘ 1,,( )[; exP(—{{:In-%)l}‘ 33

where
r.t= r/Twip] Vi

Recently four independent experi-
ments in different labcratcrjo° have found
that the ratlo &, = 4, 4)4t is not

unity as assumed in the 1s rtrcpiﬂ model.
In other words, the eddy viscosity is a
tensor instead of an invariant scalar
quanti ¥y For example, Blssonnett and
Mellor\~ ) are able to demonstrate that

the eddy viscoslty is a scalar only in
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the small region near the wall, while and
decreases to an average value of 0.7 1nd~‘l Kt = Cf/ut/P’t
{ the outer portion of the boundary layer.
Three sets of indepe n uropean exper- 7
! imental measurementsl("gerg g }5‘ have also sug- Pr= 095 -045 IJ/S

gested the value of d-., can be as low as

0.4 through the outer Pegion of the bound- Finally, Dhawan gnd Narasimha's
ary layer. intermittency factor(39) 1is used to mod-

‘ el the flow in the transitional region.

9 Hereln, the turbulence model will be The beginning of transition can be either
modified to incorporate the nonistropic specified in the (f, ¢ ) plane or DgEed
form; the magnitude of 4, 1is dependent on on the (Ree) =$ (M, critcrirn.\m‘
the coordinate direction’so that =

2 2 For the present investigastion, we zre in-
/uhz/o( ,D) %l J//[‘:/D(/ao) %7 terested in evaluating the applicability

(18) of these simple closure models for the

& solution of three-dimensional boundary

j/ =X, & fam‘ (o. _i) layer flows, including cases with cros:
LV flow reversal.

Le=n, § tank (%—t_—/- —5—) ,—‘\(’;—-5 I

In this formulation itshas been shown IITI.5 Numerical Methods
that near the wall,é = 0.41 y, \
so that o =1 1s p}eser’vgd the two Numerical computations in blunt nc
eddy vis cos}ties will differ in the outer region are initiated at the stagnation
wake region, point. A shooting method 1is u

. | integrate eq. (13). Then Krau

E | In higher order theory, the eddy scheme(26) is employed to solv ]

4 \ viscosify 1s assumed to be proportional to in a downstream marching fashion. The

i the transport properties. For example, in nonlinear terms in the finite differenc

Jones and Launder's model, 4 _ is deter- equations are linearized by the Newton-
mined by the local values of Ehe density, Raphson procedure:

turbulent kinetic energy k, and the dis-
sipation function, € . The governing (38) (UV):. =/ % +4, V[-I—/JL-I T

: differential equations for K and € are: = (20)
—Qf-:—'--d- (Zr_ﬁ.j) rK,.]q-/ut 7 ,7) ~ A€ (Uf): =2 (UJ) (dlt -1 7)"’

where L denotes the iteration number.
ik > c € u (uf +(19)
P RE=f ga?[(z‘ﬁza)rel,’, € 44 (4y

The iteration continues until =
specified convergence criteria is at-
2 2 tained. The solution is obtained with
) Wi )_C‘/DE /k an efficient "block tridiagonal" algor-
item described in Reference (40).

2 _~-1 2
- = e =3 - - 28)
% /at"c-’/K( J G /'4() G 2(/ o0.3e R') A predictor-corrector schvme(??‘
2 1s used to continue the three dimensionzal
"Pr‘ :é—K boundary layer calculation into the super-
€ sonic afterbody region. Some modifica-
i C3 =0.09 exPl-ZS/ /+ /.’,,/.(o), =/, Jsr=13 tions are made in the original P/C form-
1 ulation in order to improve its effic-
This model contains filve empirical iency and numerical stability restric-
constants which are determined from ex- tions. For turbulent flows, it ¢ . been
‘ perimental data. The advantage of the k-€ found that a modified difference(“l) pe-
> model is that the flow history is taken presentation for the lateral derivative
into account. With some adjustment on a ¢ , 1s superior to the standard
the empirical constants, flow relaminariz- central difference, 1i.e.
ation or even transition can be considered.
The following boundary conditions AU :J-bl =u l [u +u l
3 are imposed on the equations for k and € M, e e HIM T e 'ﬂ‘
3 200
, y=0, K=€= 0 w>0 (21)
T
V=& ,ueﬁ.{.re,u.ae-_ o -*@I l__[ |
) al G % =294 Y (¥ ” U4 kot L et b ety ¥ g Weo
The turbulent thermal conducti\(%gg is where M and K denotes tge indices in the
assumed to take the following form: and ¢ direction respectively.

T, = —/V’A’ This procedure will result in a ma-
y trix system which is always diagonally
dominant. Furthermore, it eliminates
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wiggles whlich sometimes appear near the
cross flow separation line. At the same
time, the numerical accuracy of this met-
hod remains of second order.

In most cases, calculations were
initiated at the windward plane. With
the formulation given in eq. (21), a
linear stability analysis shows that the
P/C scheme is unconditionally stable for
w >0, with a CFL condition on the cross
flow velocity w required if w<O,

Because of the various length scales
appearing in the turbulent flow (e.g. the
laminar sublayer, wall and wake region),
it 1is usually necessary to impose a co-
ordinate transformation or to adopt a
variable grid system. A simple mapping
of the following form will serve this
purpose:

Yely? or y:‘vz“r!n' 5 m= 2

When a variable mesh system is used, the
conventional three-point finite differ-
ence quotient can be written as:

104 oy Y
TR ) e
b §

3, _
(6—“);2, @U+Z @ U +Z (,)4_?,6” %
fb)

where (A g'—A'jL)i- O(Ag"r)aga

7 CJ)=Ag/layz(Ag;+Ag,_)
Z (J')z(A'J'-’Agl)/AyIA:,_
) C-ﬂ-—Ag/l
z &= Z/lAg; ay, +A%,_)|
Zp == 2/ayi 8y,

2 0= 2/ laylay roy.)]

L o)

TEe truncation error for U is

0( a y°) when uniform grid is Y
opecified but degenerates to

o( V») with a variable mesh.
It shou}d be noteg that U_ 1s always
second order even for nontuniform grids.

In order to reduce the truncation
error, one can evaluate U from the
governing equations and substitute
the resulting expression into the dif-
ference quotient, eq. (22). 1In doing so,
a second order accurate system 1is obtain-
ed for U To illustrate this point,
consideryythe simplified X - momentum
equation near the wall,

R =(“4g, il

One can estimate U___ by differen-
tiating eq. (22a) and substituting
into eq. (22). The result is

%(-‘)UJ +2p (D dm + 25 () Ui~ —(Ai-AfJ)
% /fT_g(Ag. ayz)

+0(Ag‘)
Here the term &« replaced by
first order relation, {:E.

/{” =Z. () 4, +Z O) i, + 2y (7) 4 (=
# o(a i —a 72)

Eq. (23a) results jn a second order
accurate repre
the results presented hers art obta in:
with this type of formulation.

An alte ng direction implicit

5 J . e .
method (4% ) is unconditional SGa—
ble for 11 tems was alsc i

However, isfac 3
tained only for laminar flows.

III.4 Results for Th
Viscous Flow Calcula

Figures (6) and (7) depi
fransfer dis FF*?bt ion on pointed
blunt cones /  Laminar anc
flows have been studied a
with experlmvntal data a
The flow propertiec at the
of a sharp cone at large
are also predicted reas
(Fig. 6).

The Nusselt number dis
cone-cylinder-flare confi £
shown 1in Fig (3\ Significa
calculations do edict the aminar h

ing overshoot 1n a region whe a strong-
ly favorable pressure 5ru1-'nt exists.
It is noted that when the flow undergees
a rapid expansion (e.g. at the junction
of cone a:d cylinder), the solution i
very sensltive to the outer boundary
ditions. The boundary layer thickns
charges rapicly and it is nc lcn"’r ad-
equate to impose the zrnjiti(x U—1
as y-»§&. An alternate pr‘c"‘ r;
gested by Ackerberg and Phili ) PP"
to be satisfactory. They *L? act
that the velocity profile ¥ *hibit
the following variation* for 7 2>/

U=lle +a7" exP|—(7—6)7A-|

.Aa:=f%‘j2¢ decif

(24

#3ImIlar expressions can be written for the temperature,

entation for U.... Most of




where a, b and k are constant at fixedé .
These values are determined by fitting

eq. (24) to the velocity profile at the
outer edge of the boundary layer. This
procedure 1is incorporated into the im-
plicit algorithm described previously.

The numerical results for the vel-
ocity and temperature profiles on a sharp
cone are given on Fig. (9). The body
geometry and free stream values cor-
respon?ug Rainbird's experimental condi-
tions When the eddy viscosity is
treated as an invariant scalar (i.e eq.
(17)), agreement between the numerical
prediction and Rainbird's data is good
for ¢ <=135° (Fig. 9). But the com-
parison deteriorates somewhat as the lee-
ward plane is approached. Similar ob-
servations apply for the limiting stream-
line inclination (Fig. 10). It is signi-
ficant that the Prandtl mixing length
theory, with a scalar eddy viscosity im-
plies an attached boundary layer; the
experimental measurements indicate that
cross flow_separation occurs for ¢ > 160°
To the authors' knowledge, this is the
first time that theoretical results have
been reported for the turbulent flow near
the leeward plane where secondary flow
reversal has occurred.

The calculated windward plane results
using the two-equation model for. Reynolds
stress closure are also shown on Fig. 9a.
The agreement with the data is good.

There 1s no apparent advantage in using
this higher order theory, since the sim-
ple modified mixing length model leads

to an equally accurate prediction at the
windward plane. At the present time num-
erical computations using the two-equation
model have been made only at the sym-
metry plane.

In order to improve the comparison
between the numerical results and the
experimental data near the leeplane,
some modifications of the eddy viscosity
formulations are required. As discussed
previ?gﬁlg7 experimental measure-
ments suggest that the eddy vis-
cosity 1s not an isotropic scalar quant-
ity in the outer wake region. Although
the distribution of‘/f‘t and ¢

1 2

across the boundary layer cannot be meas-
ured accurately at the present time, the
mean value of tne ratiody, =4 /s,

has been found to be as large as 0.7
(Ref. 33) and as low as 0.4 (Ref. 34, 36,
37). Fig. (10) shows the numerical re-
sults for the surface limiting stream-
line inclination for nonisotropic eddy
viscosity distributions as given in eq.
(18). For this calculation A = 0.09,

= 0,064 and o, = 0.5 are Assumed
Foré > 1600 - there does not appear to
be any significant improvement over the
isotropic model.

Bradshaw,(53) Baker and Jones(su)

Sl ptrio-sk)|+&le mls-s})|-0

have pointed out that the mixing length
theory may become inadequate to predict
the flows in which the boundary layer
thickness grows rapidly (such as flow
under adverse pressure gradients). In
this case, because of the convective
transport of turbulence, the magnitud
the mixing length in the outer part of
the boundary layer does not increase z=
fast as the boundary layer thickness
other words, the eddies which may have
originated near the windward plane, carry
some of the character of the bounda
layer at an earlier stage of its develop-
ment, Near the leeplane a rapid thicken-
ing of the boundary layer occurs. The
mixing length is in fact indicative of
the flow some distance upstream, where
was appreciably thinner. Consequently

the apparent value of A in egqs. (17

or (18) falls. Here an céiu tment for
this effect is made by r@duvinw the con-
asant X from 0.09 to 0.063 for tv:
flow near the leeward plane (¢ > 14
Results are given on Figs. {9E) and
Crossflow separation is predicted =o
what more accurately with this modifica
tion, although the improvement is on
marginal,

IV. The Coupled Viscous and Inviscid
Flow Computations

Solutions for the inner and outer
layers are now coupled in order to take
into account the viscous-inviscid inter-
action. For the inviscid (outer) floy..
computations, the viscous displacement”
is 1ncluded by considering the effectiv
body shape as modified by

leg(2,8)=r(2,0) +a cos & (o5

A 1s the three dimensional thrlg,
ment thickness, which must be obtaine
from the partial differential equation:

where 5;:-/; (l—fh//g k/e)d
87, (PR o)y

The body entropy value, i
estimated by the steamtube rnpﬁanwmynt at
the windward plane, 1i.e.

f_',!= 2& rwd, Sw= S(r, ,0)

The procedure for evaluating ?V is dem-
onstrated in Fig. 1. Our formulation by-
passes the thin "entropy or vortical lay-
er" effect which can lead to numerical
instability when Z/R T

For the inner layer computations,
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the boundary layer edge properties are
obtained by interpolating the inviscid

properties at r = o+ dcos 8. Here 4
is found from(h@)
d=8§ - & (27)

When the external inviscid flow 1s highly
rot?Eional then the following criter-

ion(49a, is used to define the local
value of §
(h+& - h) /(//., = 0.99 =

This condition replaces the conven-
tional procedure of setting U. =T _ = O
as y-so00 . However, for adia¥aticYwalls
it 1s necessary to revert to the conven-
tional U_ = O condition to locate the
boundary”layer edge. This implies that
the inner flow calculation contains part
of the inviscid vortical layer.

The procedure for the. numerical
computation starts with the calculation
of the outer flow. The inviscid inform-
ation is input into the inner layer cal-
culations. However, when the Euler equa-
tions are integrated at Z=Z2Z, EEE
local value of & is still unknown as
the boundary layer calculations have not
reached Z Herein, a "cyclic itera-
tion" proceaure is employed. We, K initi-
ate the calculations of the outer layer
by estimating two sets of valuesd A /3 x.
These are obtained from Taylor series
extrapolations:

W=2(3%), ~ ($%)un

a) 4£) +—0.f

and Apmy = AM+(%—)AX

After completing the inviscid flow
computations, this information is input
to the three dimenslonal boundary layer
computations from which corrected values
of = ( bA/éx)M + 1 are obtained.

Then a new %timage forda /a x is
written as 50

n @ Q) @)
—--bA - YQ. WC iy 1{/‘; ya. (29)
X 2) O + o)

The iteration procedure continues until
convergence 1s achleved. During the
development of the numerical program it
was found that a fixed-point iteration
(1.e. using the most recently calculated
34/8 x for the next cycle of cal-
culation) converges quite slowly for

certain flow conditions and, therefore,
becomes impractical., However, a Newtcn-
Raphson procedure (i.e. eq. (29)) work
satisfactorily in all cases tested co
far. Usually 3 iterations are neceszary.

The numerical procedures of coupling
the inner and outer flow have been
plied to a number of test cases; h
for the present paper only one ¢as
be presented. Sample results consi
here are for th@ "Spor cn*ﬂ flow

sphere-cone (6 = 9 at 10° angle {? at-

tack. Free-stream ﬁé3 nrcp'rt ar
based on Widhopf's wrnt'1 con

n-
ditions. The i1nviscid blunt body result
are obtained by the time dependent methcd
without the viscous displacement cor-
rection, since this effect is 111 in
the blunt nose region for the high Rey-
nolds number flow (RrC = 1.8 x 100/ P, ,
5) studied hereZ° The Blottner and
Efii> formulation is used for the inner
boundary layer calculations which are
initiated at the stagnation pecint.

In the supersonic conical sectio
the inner and outer flows are determined
by a marching procedure. Viscou: i
placement and entropy swallowing are in-
cluded in the iterative matching of the
two regions. A three-point Lagrange's
formula is used to interpolate the bound-
ary layer edge conditions from the in-
viscid flow properties.

The surface coordinates for the
blunt body boundary layer calculations
are illustrated in Fig. (11). The heat
transfer distribution on the body is de-
picted in Fig. (12). Here the transiticn
points are specified from the experiment-
al measurements, It is shown 1n Pir 12
that the heating (for 7/FNJQ' will be
underpredicted by at most when en-
tropy layer swallowing ef‘f‘e\tc are not
included. These effects will become 3
more important at higher Mach numbe
and lower Reynolds number, It is alsc
found that the viscous displacement ef-
feects have a small influence on the in-
viscid pressure distribution for the
flow conditions under investigations
(Fig. 13). Perhaps this is expected
since Q&/r 1is always less than 0.1.
Comparisons Ybetween the numerical re-
sults and Widhopf's data (heat transfer
and surface pressure) is good.

V. Summar

A method has been developed for
treating the viscous flow over a blunt
or sharp body at angle of attack. Here-
in, a two layer model is suggested. The
inner region consists of the three dim-
ensional boundary layer and boundary
reglion. TLaminar and turbulent flows are
considered. The governing system can
handle problems with cross flow revers-

al and is integrated by predictor-
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corrector or alternating direction im-
plicit method. The outer inviscid flow
i1s computed with MacCormack's two level
finite difference scheme, with the bow
shocks treated as discontinuities. The
salient features for matching these two
regions include the effects of the three
dimensional viscous displacement and
entropy layer swallowing. It is only
necessary to input the body geometry,
free-stream flow properties and the sur-
face conditions. The numerical results
include the aerodynamic coefficients,
heat transfer and the detailed flow pro-
files.

The general treatment of the prob-
lem and the method of solution are ver-
ified by the good agreement obtained be-
tween results from the present formula-
tion and the experimental data. It is
observed in our preliminary results
that: (1) the simple scalar mixing len-
gth theory for the Reynolds stress ex-
hibits minor defects in regions with
cross flow separation. Some adjust-
ments are necessary in order tc obtain
a better comparison with experimental
data; (2) for numerical results not
shown here, the viscous displacement
effects may become more pronounced in
laminar than turbulent flow and (3) the
entropy-layer swallowing is of only min-
or importance for the examples consider-
ed here; nevertheless, 1t is expected
that this phenomena can become dominant
at hypersonic speeds and for low Reynolds
numbers .

Work 1in progress includes the fol-
lowing investigations: (1) supersonic
flow over cones at large angles of at-
tack ( & /6 > 1.5; attention will focus
on the existence of inviscid solutions),
(i1) optimization of the numerical pro-
cedures for coupling the inner and outer
flow and for the interpolation of the
boundary layer edge properties, and
(111) the application of improved Rey-
nolds stress modelling for the three-
dimensional boundary layer.
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